
Evaluation of Perchlorate Rejection by Nanofiltration and Reverse Osmosis Membranes

Sun Liang, Ph.D., P.E.
Leslie Palencia, P.E.,
and Jeanne-Marie Bruno, P.E.
The Metropolitan Water District of Southern California
J. Richard Phillips, Ph.D.
Harvey Mudd College

Perchlorate

- Ammonium perchlorate (NH₄ClO₄)
- Ingredient for solid rocket fuels, explosives, munitions, and fireworks
- Forms anionic ion (ClO₄) in water
- High water solubility (107.4 g/L at O°C to 424.5 g/L at 85°C)
- Concentrated oxygen source
- Molecular size 6-10 Å

Health Effects

- Inhibits hormone production by thyroid
- No federal or state regulations
- California Provisional Action Level of 18 μg/L

Occurrence

- Las Vegas Wash (as high as 1,700 μg/L)
- Lake Mead (10-24 μg/L)
- Colorado River Water in Metropolitan's System (5-7 μg/L)
- Groundwaters in Southern California (Nondetect to >500 μg/L)

Treatment Options

- Granular activated carbon (GAC)
- Ion exchange
- Membranes
- Anoxic biodegradation
- Hybrid system

Membrane Study Objectives

- Compare CIO₄ removal with nanofiltration (NF) vs. reverse osmosis (RO) membranes
- Evaluate the effect of ClO₄ feed concentration on ClO₄ rejection rates
- Evaluate the effect of recycling the retentate

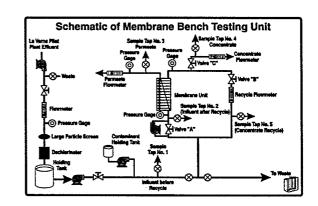
Mechanisms of Perchlorate Rejection

Complex perchlorate-membrane chemical interaction involves:

- Co-ion repulsion
- Diffusion
- Sorption

Experimental Design

- Spiral Wound Membranes
 - ➤Film Tech N70 4040-B (NF)
 - ➤Fluid Systems TFC 4820-ULPT (RO)
- Post treatment
- ◆ Spiked ClO₄⁺ Dosages:
 - **►Low: 20-50 μg/L**
 - ➤ Medium: 500-800 µg/L
 - ►High: 1,000-2,000 μg/L

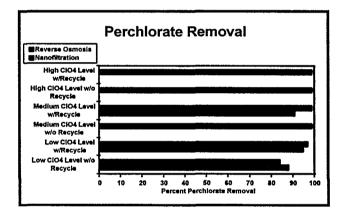

Experimental Design (Cont'd)

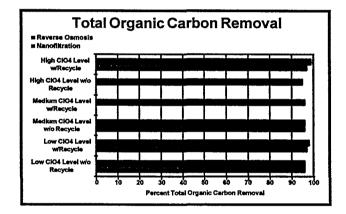
- Brine recycle at 50% of influent flow
- Test duration 3 hours
- Sampled 2nd and 3rd hour at influent, influent with recycle, permeate, and brine
- Measured ClO₄-, total organic carbon (TOC), conductivity, UV₂₅₄ absorbing organics, turbidity, and particle counts

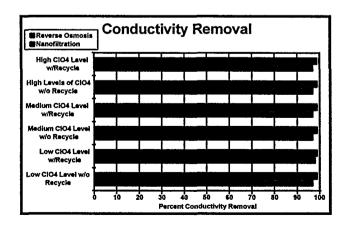
Membrane Characteristics

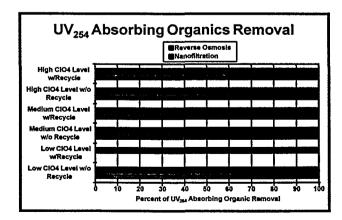
Туре	MWCO	Surface Charge	Compo- sition	Surface area (11²)	Flux (GFD)	Recovery (%)
NF	300 Da		Thin Film Composite	82	15	20
RO		Negative Charge	Thin Film Composite	72	15	20

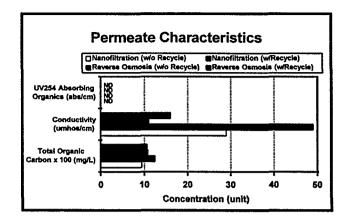
MWCO - molecular wieight cutoff




Membrane Influent Water Quality


Source Water	CRW
Total Organic Carbon	2.40 - 3.05 mg/L
UVA ₂₅₄	0.024 - 0.032 abs/cm
Conductivity	969 - 1030 µmhos/cm
Temperature	20.4 - 21.5 °C
рН	8.09 - 8.24
Turbidity	0.12 - 0.78 NTU
Particle Count	113 - 1590 /mL


Specific Flux for Membranes


Membrane	Average Pressure (psi)	Average Permeate (gpm)	Average Flux (GFD)	Specific Flux (GFD/psi)
NF	87	0.86	15	0.17
RO	106	0.76	15	0.14

Brine Characteristics

- Perchlorate, TOC, conductivity, UV₂₅₄ absorbing organics were concentrated in the brine
- Membrane systems concentrated ClO₄ in brine by approximately 20-50 percent

Preliminary Findings

- NF and RO membranes can effectively remove CIO₄: from CRW
- NF and RO performed equally well for ClO₄⁻ removal at low levels of ClO₄⁻ and lowered ClO₄⁻ concentration below 4 μg/L in permeate

Preliminary Findings (Cont'd)

- RO performed better than NF for ClO₄ removal at medium and high levels of perchlorate
- Brine recycle did not significantly affect ClO₄^{*} percent rejection, but produced higher ClO₄^{*} levels in permeate

Preliminary Findings (Cont'd)

- Total organic carbon, conductivity, and UV₂₅₄ absorbing organics can also be effectively reduced by membranes
- Conductivity increased in permeate when brine recycled
- Brine disposal/treatment is required